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Abstract. The dynamics of an idealized polymer chain (bead-spring model) is treated as a
special case of Brownian motion in a potential. In free space the corresponding Langevin
description is sufficient. In the presence of constraints on the dynamics one has to apply the full
Fokker–Planck formalism. In general, the ensuing boundary value problem is not analytically
solvable, so we resort to approximation methods. For diffusive motion in a potential there
exists a natural Hilbert space on which the Fokker–Planck operator is positive (semi-)definite.
Consequently, the problem is amenable to variational methods. Here, we investigate exemplarily
the relaxation of a Rouse chain fixed with one end to a planar, impenetrable surface and obtain
the relaxation spectrum approximately using the Rayleigh–Ritz scheme. This may be the first
instance in which this formalism is applied to polymer dynamics.

1. Introduction

The dynamical behaviour of macromolecules is of fundamental interest for many technical
applications of polymer materials. A basic concept for the understanding of the diffusive
motion of long flexible chain molecules is the Rouse model [1, 2]. In this model a polymer
is idealized as a chain of Brownian particles connected by harmonic springs. The model
provides a reasonable picture for dense polymer melts, if the chain lengthN does not exceed
the so-called entanglement threshold [2, 3], as also shown by recent computer simulations
[4, 5].

Polymers in confined geometries can also be modelled through the Rouse model. The
simplest case is perhaps that of a chain fixed to a solid, impenetrable wall. Other important
examples are polymers squeezed between two walls or confined in a tube [6] or in a pore
[7]. A common property of all these situations is that the corresponding Rouse models
are not amenable to a purely analytical treatment, since the modes of the original linear
equation become coupled. In some situations, such as polymers in thin tubes [8] or in porous
media [7] characteristic properties of the constrained dynamics can be obtained usingad
hoc models (reptation, entropic trapping), but a unified theoretical treatment is still missing.

Here we use the Rayleigh–Ritz variational scheme (which is well known in quantum
mechanics, see also a recent application to nonlinear dynamics [9]) to evaluate the relaxation
modes of a Rouse chain under constraints. The procedure starts from a description of the
chain’s dynamics by means of the associated Fokker–Planck equation (in polymer literature
it is often called the Smoluchowski equation). Due to the fact that for Brownian motion in
a potential detailed balance holds, the Fokker–Planck operator is positive (semi-)definite on
the appropriate Hilbert space, so that (Rayleigh–Ritz) variational techniques can be used.
This variational approach is a viable alternative to computer simulations to obtain numerical
results for constrained polymer dynamics. In this paper we apply this formalism to the case
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of a chain fixed with one end to a planar solid wall, including numerical calculations
of the relaxation spectrum. Applications of the Rayleigh–Ritz scheme to other physical
situations such as polymers confined in a narrow gap between two plates will be the topic
of an ensuing publication. In general, the variational approach propagated here—due to its
analytical roots—can be a short-cut, when compared with direct computer simulations, to
numerical evaluations for specific situations.

The paper is organized as follows. In section 2 we present a brief discussion of the
general formalism for Brownian dynamics in a potential. This provides the background
for treating the dynamics of a tethered polymer by means of the Fokker–Planck equation.
The whole chain consisting ofN beads corresponds to a point in the 3N -dimensional
configuration space. The potential for this ‘point particle’ stems from the Hookean springs
which connect the beads. We then reformulate the Fokker–Planck equation as an eigenvalue
problem, and solve it numerically through Rayleigh–Ritz methods.

In section 3 the general formalism is applied to the dynamics of a tethered polymer chain.
A separation of variables allows us to treat the different spatial directions independently.
For the motion parallel to the surface the traditional Langevin approach and the Fokker–
Planck ansatz are equivalent. For the motion perpendicular to the surface the constraints are
incorporated as boundary conditions for the Fokker–Planck equation. The Rayleigh–Ritz
method introduced in section 2 is now used to determine the relaxation spectrum. The
corresponding matrix elements are calculated by means of recursion relations, based on
truncated Gaussian integrals. A derivation of these integrals has been kindly provided to us
by Glasser [15], and is presented in the appendix. Finally, we discuss our numerical results
in section 4 and show how their qualitative features can be understood using a mean-field
model.

Throughout the paper we use the following notation:
• capital indicesK,L = 1, . . . , N enumerate the beads of the Rouse chain.
• Lower case indicesi, j = 1, . . . ,∞ label sets of functions in the appropriate Hilbert

space.
• Arbitrary functions in Hilbert space are designated byψi, χi , while the ϕi denote

eigenfunctions of the Fokker–Planck operator.

2. Brownian dynamics in a potential

2.1. The Fokker–Planck approach

Standard models for the dynamics of polymers start from the damped (diffusive) motion
of chain segments. In the Rouse model [1, 2], the segments are idealized as beads which
are connected by Hookean springs. For a chain consisting ofN beads, the collection of all
their positions corresponds to a point in a 3N -dimensional position space, and the collective
motion of the chain may be described as the diffusion of this 3N -dimensional point under
the influence of the spring forces. Without external constraints, the related stochastic process
corresponds to a 3N -dimensional Ornstein–Uhlenbeck process [10].

In order to set the scene for general constrained dynamics, we start by discussing the
Brownian motion of a point particle under the influence of a deterministic force fieldF (r).
The time evolution of the particle’s probability distributionp(r, t) is governed by the
Fokker–Planck equation [11]

∂

∂t
p(r, t) = [1−∇ · F (r)]p(r, t) (1)

which is a superposition of a diffusive and a deterministic (Liouville-type) term. If the
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diffusion is restricted to a domain�, one also has to take into account what happens at the
boundary∂�. Here we focus on the case where the particle is reflected elastically at the
boundary. This amounts to the condition

n · J(r, t) = 0 on ∂� (2)

with the probability current given by

J(r, t) = [−∇ + F (r)]p(r, t). (3)

A special situation occurs when the force field is conservative, and hence is related to
some potentialU(r):

F (r) = −∇U(r). (4)

In this case the equilibrium solution to equation (1) is immediate:

p0(r) = 1

Z
e−U(r) (5)

whereZ is the normalization constant. The factorization

p(r, t) = q(r, t) · p0(r) (6)

transforms equation (1) into a more convenient form, namely

∂

∂t
q(r, t) = [1+ F (r) · ∇]q(r, t) = −Lq(r, t) (7)

which is formally the adjoint of equation (1). Here we have introduced the diffusion operator

L = −1− F · ∇ (8)

with the minus sign chosen such that the spectrum ofL consists of nonnegative eigenvalues
(see below). Note thatL can also be written as

L = −eU(r)∇e−U(r)∇. (9)

Instead of the mixed boundary conditions forp(r, t), equation (2), the boundary conditions
for q(r, t) are simply of Neumann type:

n · ∇q(r, t)|∂� = 0. (10)

The solution of equation (7) for any given initial conditionq(r, t = 0) = q0(r) can be
formally written as

q(r, t) = e−tLq0(r) (11)

or, by means of the associated integral kernel, as

q(r, t) =
∫
p(r, 0→ r′, t)q0(r

′) dr′ (12)

with p(r, 0→ r′, t) denoting the transition probability for the diffusion process subject to
the appropriate boundary conditions.
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2.2. Rayleigh–Ritz approximation

The main step towards a solution of equation (7) is an eigenfunction expansion with respect
to the spatial component. Given a complete setϕi(r) of (normalized) eigenfunctions forL,
i.e.

Lϕi(r) = ωiϕi(r) (13)

where theϕi obey equation (10), the transition probability can be written as

p(r, 0→ r′, t) =
∑
i

ϕi(r)ϕi(r
′)p0(r

′)e−ωi t . (14)

If no boundary conditions have to be accounted for, the eigenvalue problem equation (13)
can be transformed into an equivalent Schrödinger problem with

LSchröd = −1+ V (r) (15)

where the Schr̈odinger potentialV (r) is related to the original potentialU(r) by

V (r) = 1
4(∇U(r))2− 1

21U(r). (16)

In general, however, such a transformation is not practical in the presence of boundary
conditions. For instance, the simple Neumann boundary conditions equation (10) are
transformed to position-dependent mixed boundary conditions of the form

[n · ∇ + 1
2(n · ∇U(r))]ϕ(r) = 0. (17)

Another approach to the solution of the eigenvalue problem equation (13) for the
Fokker–Planck equation (7), inspired by quantum mechanical techniques, uses variational
methods. Generally, such methods may be applied to arbitrary positive definite, self-adjoint
operators on some Hilbert space. For diffusion problems satisfying the detailed balance
condition with respect to some equilibrium distributionp0(r), a suitable Hilbert space,
rendering the diffusion operator positive definite, is naturally provided byL2(�, p0 dr). The
corresponding weighted scalar product is defined by means of the equilibrium distribution
p0(r) of equation (5)

〈χ,ψ〉p0 =
∫
�

χ∗(r)ψ(r)p0(r) dr (18)

(with the asterix denoting complex conjugation). The unbounded diffusion operatorL as
given in equation (9) is symmetric with respect to the scalar product〈, 〉p0 . Apart from
the zero eigenvalue corresponding to the equilibrium state,L is even positive definite: For
any functionsχ(r) andψ(r) belonging to the domain ofL subject to Neumann boundary
conditions we have

〈χ,Lψ〉p0 = −
1

Z

∫
�

χ∗(r)(eU(r)∇e−U(r)∇ψ(r))e−U(r) dr

= 1

Z

∫
�

(∇χ∗(r))(∇ψ(r))e−U(r) dr − 1

Z

∫
∂�

χ∗(r)(n · ∇ψ(r))e−U(r) dσ

= 〈∇χ,∇ψ〉p0. (19)

Here,∂� denotes the boundary of the domain�, and the integral over∂� vanishes due to
the Neumann boundary conditions. The eigenvalue problem equation (13) is now equivalent
to

〈∇ψ,∇ϕi〉p0 = ωi〈ψ, ϕi〉p0 for anyψ (20)

provided theϕi(r) obey Neumann boundary conditions. Due to the growth properties of
p0(r) at infinity,L usually has, as in the case of Schrödinger equations, a discrete spectrum.
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In the concrete case discussed below the relevant domain� for the differential equation
is unbounded. Instead of applying some kind of finite element methods it seems more
appropriate to use the Rayleigh–Ritz scheme for a numerical solution of the variational
problem, equation (20).

The choice of some basisψi(r) of globally defined functions inL2(�, p0 dr) formally
transforms equation (20) into an infinite-dimensional algebraic eigenvalue problem. To
simplify the calculations we do not require that theψi ’s be orthogonal to each other.
Hence, we are led to a generalized eigenvalue problem of the form

Lvi = ωiSvi . (21)

In order to avoid taking care of the zero eigenvalue corresponding to the one-dimensional
subspace of constant functions, we restrict (21) to the orthogonal complementH of that
subspace. Implementing this projection, the matrix elements ofL andS are then given by

Lij = 〈ψi,Lψj 〉p0 = 〈∇ψi,∇ψj 〉p0 (22)

and

Sij = 〈ψi, ψj 〉p0 − 〈ψi〉p0〈ψj 〉p0. (23)

The vectorsvi are determined by the relationϕi(r) =
∑
(vi )jψj (r).

In the Rayleigh–Ritz approximation scheme, we restrict equation (21) to the sequence
H(n) of finite-dimensional subspaces spanned by the firstn basis elementsψ1, . . . , ψn. For
fixed i the approximate eigenvaluesω(n)i , n = i, . . . form a decreasing sequence which
bound the true eigenvalueωi from above, see [12].

3. The Fokker–Planck approach to constrained Rouse dynamics

The dynamics of polymer chains in semidilute melts is usually described in terms of the
Langevin equation (Rouse model) [2]

ζṘK = κ(RK+1− 2RK +RK−1)+ ξK (24)

where the position of theKth bead is denoted byRK , andξK are Gaussian random forces
related to the temperatureT through

〈ξK(s)ξL(t)〉 = 2ζkBT δKLδ(s − t). (25)

In order to incorporate geometric restrictions on the chain’s motion, however, we
start with the Fokker–Planck equation associated with equation (24). The ‘point-particle’
of section 2 now corresponds to the whole chain ofN beads, described as a point
r = (r, . . . , rN ) in the 3N -dimensional configuration space, whererK = (xK, yK, zK)

denotes the (dimensionless) position vector of theKth monomer. In the absence of an
additional external field,U(r) is taken as the harmonic potential of the Hookean springs,
representing the chain connectivity. In the following we will consider the case of a chain
fixed with one end at the originr0 = 0 (see figure 1). The potential is then given by

U(r1, . . . , rN) = 1
2[r2

1 + (r1− r2)
2+ · · · + (rN−1− rN)2]

= 1
2

N∑
K,L=1

MKLrKrL (26)
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x = 0

x

y, z
r2

rN

r1

Figure 1. A Rouse chain fixed at a planar surface.

where we have introduced the so-called Rouse matrixM, which has the form

M =


2 −1 0

−1 2
. . .

. . .
. . .

. . .
. . . 2 −1

0 −1 1

 . (27)

Inserting this harmonic potential into equation (7) we obtain the Fokker–Planck equation
for the Rouse chain:

∂

∂t
q(r1, . . . , rN, t) =

∑
K

[1rK −
∑
L

MKLrL · ∇rK ]q(r1, . . . , rN, t). (28)

If the motion of the monomers is restricted to some regionR of the three-dimensional
position space, the relevant domain for equation (28) is� = RN , and this equation has to
be supplemented with the corresponding Neumann boundary conditions, equation (10).

3.1. A Rouse chain tethered to an impenetrable surface

As a concrete example for geometric restrictions we will now consider a Rouse chain
fixed (tethered) with one of its ends to an impenetrable planar surface. Our main interest
is concerned with its relaxation spectrum. Additionally, inspired by experiments with
certain dielectrically active tethered polymer chains, we will furthermore investigate the
autocorrelation function of the chain’s end-to-end vector. In a linear approximation, this
function determines the dielectric response of the samples to an alternating, homogeneous
electric field (cf [13]).

The surface will be taken here to be theyz-plane atx = 0. The chain is supposed to
be fixed at the originr0 = 0 (see figure 1).

Due to the linearity of the Hookean forces, the corresponding stationary eigenvalue
problem can be separated into three independent components, each space direction leading
to anN -dimensional equation (N being the number of beads)

[−1ζ +Mζ · ∇ζ ]ϕi(ζ) = ω(ζ)i ϕi(ζ). (29)

In equation (29)ζ now stands for any directionx, y or z, andζ = (ζ1, . . . , ζN). Since the
force componentsFK = −

∑
LMKLζL depend onζK−1 and ζK+1, a further separation of

variables will only be possible in the absence of boundary conditions.
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3.1.1. Direction parallel to the surface.Parallel to the surface, equation (29) has to be
solved on the wholeRN without any specific boundary conditions, apart from the usual
integrability requirements. This is a standard exercise and furnishes the same results as
the classical treatment of Rouse dynamics by Langevin methods. We summarize the main
points which we also need later for a comparison with the motion perpendicular to the
surface, see [13] for details.

By a transformation to normal coordinates(uK)K=1,...,N—defined in terms of the
orthogonal eigenvectors of the Rouse matrixM—the N -dimensional Fokker–Planck
equation separates intoN single ordinary differential equations of Hermite type. Hence, the
solutions of the eigenvalue problem are suitable products of (scaled) Hermite polynomials
[14]

ϕi(u1, . . . , uN) = constantHi1

(
u1

√
ωR1 /2

)
. . . HiN

(
uN

√
ωRN/2

)
. (30)

The corresponding eigenvalues of the form

ω(i1,...,iN ) = i1ωR1 + · · · + iNωRN (31)

are linear combinations with nonnegative integer coefficients of the eigenvaluesωRK of M

ωRK = 4 sin2

[(
2K − 1

2N + 1

)
π

2

]
K = 1, . . . , N. (32)

TheωRK are thefundamentalRouse frequencies.
Provided that with these data one can immediately calculate the correlation matrix

C(q)(t), which is completely determined by the Rouse matrix

C(q)(t) = 〈(ζ(0)− ζ̄)⊗ (ζ(t)− ζ̄)〉 =M−1e−tM (33)

i.e. the fluctuations of the positions for theKth andLth bead (inζ = y- or z-direction) are
correlated according to

〈(ζK(0)− ζ̄K)(ζL(t)− ζ̄L)〉 = (M−1e−tM)KL. (34)

In particular it turns out that only the fundamental Rouse frequencies contribute to linear
relaxation phenomena. As will be shown below, the situation changes drastically in the
presence of boundary conditions, where anharmonicities influence the relaxation spectrum.

3.1.2. Direction perpendicular to the surface.For thex-direction normal to the surface
the relevant domain is the region

� = {x|xK > 0,K = 1, . . . , N} (35)

with x = (x1, . . . , xN). The Neumann boundary conditions (10) for the corresponding
eigenfunctionsϕi(x) are:

∂

∂xK
ϕi(x) = 0 at xK = 0. (36)

In contrast to the case without boundary conditions discussed in section 3.1.1, we cannot
solve this boundary value problem in closed, analytical form (except for the simple case
N = 1). Due to the reflections at the surface the individual Rouse modes are coupled, and
the problem no longer separates. A transformation to the normal coordinates of the Rouse
matrix M leads to nondiagonal boundary conditions. However, an auxiliary, approximate
model (with modified boundary conditions), based on the separation method in the parallel
case, can at least be introduced to obtain lower bounds for the spectral values, see [13] for
details.
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In the following section we will apply the Rayleigh–Ritz approximation scheme to
investigate the Rouse dynamics perpendicular to the interface. Concentrating on the
dynamics of the chain end, a simple physical model for the resulting (approximate) spectrum
will be given in terms of a mean-field approximation in the concluding section.

3.2. Computational steps for the Rayleigh–Ritz approximation

3.2.1. Choice of basis functions.The main criteria for a suitable choice of basis functions
for the Rayleigh–Ritz approximation are:
• the Neumann boundary conditions have to be satisfied;
• the matrix elementsLij and Sij , determined byN -dimensional integrals over the

region of equation (35), must be evaluated with sufficient accuracy.
Due to the first requirement, the Hermite polynomials, equation (30), have to be ruled

out as candidates, since they do not obey the correct boundary conditions.
Instead, a convenient set of basis functions for our domain� consists of polynomials

of the form

ψ(i1,...,iN )(x) = cxi11 . . . x
iN
N with iK 6= 1

∑
iK > 0. (37)

The conditioniK 6= 1 guarantees that theψ(i1,...,iN ) obey the Neumann boundary conditions
∂/∂xK [ψ(i1,...,iN )] = 0 at xK = 0.

In order to keep the corresponding matrix elements of a reasonable size, the freely
adjustable prefactorsc in (37) are taken as

c(i1, . . . , iN ) = (i1! . . . iN !)−1. (38)

Having chosen this set of basis functions indexed by some multi-index, i.e. by anN -tuple
(i1, . . . , iN ) of nonnegative integers, the next step consists of arranging them in consecutive
order, and we denote byi the integer corresponding to the multi-index(i1, . . . , iN ).

3.2.2. Matrix elements. When inserting the above-chosen polynomials into equations (22)
and (23) we have to compute various moments with respect to the equilibrium distribution.
The normalization constants are

ZUN =
∫
�

e−UN(x1,...,xN ) dNx (39)

with UN(x) being the part of the harmonic potential corresponding to thex-components of
the monomer positions

UN(x1, . . . , xN) = 1
2(x

2
1 + (x1− x2)

2+ · · · + (xN−1− xN)2)
= 1

2x ·Mx. (40)

Additionally we need the auxiliary normalization constants

ZVN =
∫
�

e−VN (x1,...,xN ) dNx (41)

with

VN(x1, . . . , xN) = 1
2(x

2
1 + (x1− x2)

2+ · · · + (xN−1− xN)2+ x2
N)

= 1
2x · Nx (42)
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where

N =


2 −1 0

−1 2
. . .

. . .
. . .

. . .
. . . 2 −1

0 −1 2

 (43)

corresponding to a polymer loop fixed at the surface. The analytical determination ofZUN
andZVN was communicated to us by Glasser [15] and is presented in the appendix. The
results are (see also [16]):

ZUN =
(π

2

)N/2 (2N − 1)!!

N !
(44)

and

ZVN = (2π)N/2(N + 1)−3/2. (45)

Furthermore, foriK > 0 we have to calculate the moments

uN(i1, . . . , iN ) :=
∫
�

x
i1
1 . . . x

iN
N e−U(x1,...,xN ) dNx (46)

as well as

vN(i1, . . . , iN ) :=
∫
�

x
i1
1 . . . x

iN
N e−V (x1,...,xN ) dNx. (47)

As we proceed to show, the moments can be determined using suitable recursion relations.
Note first that bothM−1 andN−1 exist and are given by

M−1 =


1 . . . . . . 1
... 2 . . . 2
...

...
. . .

1 2 N

 (48)

and

N−1 = 1

N + 1


N N − 1 . . . 2 1

N − 1 2(N − 1) . . . 4 2
...

...
. . .

...
...

2 4 . . . 2(N − 1) N − 1
1 2 . . . N − 1 N

 . (49)

Thus we can write

x · e−UN(x) = −M−1 · ∇e−UN(x) (50)

and likewise

x · e−VN (x) = −N−1 · ∇e−VN (x). (51)

Since the evaluation ofuN and vN runs along parallel lines we now will use the symbol
wN to denoteuN or vN , whileWN stands for the potentialsUN or VN . Likewise,W will be
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the variable representing the matricesM andN. Using equations (50) and (51) we obtain
for wN(i1, . . . , iK + 1, . . . , iN )

wN(i1, . . . , iK + 1, . . . , iN ) =
∫
�N

x
i1
1 . . . x

iK+1
K . . . x

iN
N e−WN(x) dNx

=
∫
�N

x
i1
1 . . . x

iK
K . . . x

iN
N [xKe−WN(x)] dNx

=
∫
�N

x
i1
1 . . . x

iN
N

[
−

N∑
L=1

W−1
KL

∂

∂xL
e−WN(x)

]
dNx

=
N∑
L=1

W−1
KLiL

∫
�N

x
i1
1 . . . x

iL−1
L . . . x

iN
N e−WN(x) dx1 . . .dxN

+
N∑
L=1

W−1
KLδiL0

∫
�N−1

x
i1
1 . . . x

iN
N e−WN(x) dx1 . . .dxL−1 dxL+1 . . .dxN

∣∣∣∣
xL=0

.

(52)

Due to the relation

WN(x1, . . . , xL = 0, . . . , xN) = VL−1(x1, . . . , xL−1)WN−L(xL+1, . . . , xN) (53)

equation (52) can be written as

wN(i1, . . . , iK + 1, . . . , iN ) =
N∑
L=1

W−1
KLiLwN(i1, . . . , iL − 1, . . . , iN )

+
N∑
L=1

W−1
KLδiL0vL−1(i1, . . . , iL−1)wN−L(iL+1, . . . , iN ) (54)

where the ‘empty’ functions are to be understood asw0 = 1. Note the explicit occurrence
of thev-type moments in the formula for theu-type moments. This requires that thev-type
moments have to be determined first. The above normalization constants in equations (39)
and (41) are given by

ZWN = wN(0, . . . ,0) (55)

and serve as a starting point for a recursive determination of the higher-order moments
according to the central relation, equation (54).

Having determined all relevant moments we can use them to obtain the matrix elements
Lij andSij :

Lij = 〈∇xψ(i1,...,iN ),∇xψ(j1,...,jN )〉p0

= 1

ZUN

N∑
K=1

iKjK
uN(i1+ j1, . . . , iK + jK − 2, . . . , iN + jN)

c(i1, . . . , iN )c(j1, . . . , jN)
(56)

as well as

Sij = 〈ψ(i1,...,iN ), ψ(j1,...,jN )〉p0 − 〈ψ(i1,...,iN )〉p0〈ψ(j1,...,jN )〉p0

= 1

ZUN

uN(i1+ j1, . . . , iN + jN)− 1
ZUN
uN(i1, . . . , iN )uN(j1, . . . , jN)

c(i1, . . . , iN )c(j1, . . . , jN)
. (57)

Finally, the eigenvalues and eigenvectors for the finite-dimensional approximations

L(n)v(n)i = ω(n)i S(n)v(n)i (58)
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Table 1. Parameters for the numerical evaluation of the spectrum.

Maximal degree Maximal number Number of Required number
Chain length for polynomials of basis functions matrix elements of moments
N dmax nmax

nmax(nmax+1)
2

(
N+2dmax+1

N

)
2 15 106 5 671 528
3 14 402 81 003 4 960
4 13 984 484 620 31 465
5 12 1716 1473 186 142 506
6 10 1405 987 715 296 010
7 8 749 280 875 346 104
8 7 552 152 628 490 314
9 6 345 59 685 497 420

10 5 175 15 400 352 716

of the original generalized eigenvalue problem, equation (21), are calculated numerically
using standard NAG routines.

One should note that the approximating sequences are built successively by adding
further basis functions. Hence, it is sufficient to determineL(nmax) and S(nmax) for some
maximal dimensionnmax of the approximation. Any intermediate matrixL(n) or S(n) is
then simply obtained by restricting the largest matrices to the correspondingn-dimensional
upper-left submatrices. This feature even persists when equation (58) is transformed into a
standard eigenvalue problem via a Cholesky decomposition ofS(n).

4. Discussion of the results

4.1. Numerical results

The numerical solution of equation (58) has been carried out for chains of lengthsN = 2–
10. The maximal number of basis functions used and related parameters are listed in table 1.
The size of the set of basis functions is restricted both by limitations of available memory
and also by a loss of accuracy for the higher moments due to the number of recursion steps
required for their computation. The number of recursions is given by 2dmax of table 1, where
dmax denotes the maximal degree of the polynomials used as basis functions. For larger
basis sets than those given in table 1, the diagonalization leads to negative eigenvalues,
which is a sign for inherent numerical instabilities. Nevertheless, the relevant positive
eigenvalues remain stable, and were checked forN = 2 andN = 3 by a direct evaluation
of equations (46) and (47) for the moments.

Based on the parameters listed in table 1, we have determined numerically the
eigenvalues and eigenvectors, as well as the end-to-end vector correlation functions. By
varying the number of basis functions fromn = 20 to n = nmax we have obtained
information about the convergence, indicating that the physically relevant lower part of
the spectrum is stable. A graphical illustration of the spectrum for a chain of lengthN = 5
is given in figure 2. The plots show the Rouse frequencies for:

(a) the free case, corresponding to the motion parallel to the surface;
(b) the mean-field approximation for the direction normal to the surface, to be discussed

in the following section;
(c) the direction normal to the surface in the Rayleigh–Ritz approximation.
The frequencies are normalized with respect to the lowest fundamental Rouse frequency



5018 M Koch et al

0 5 10 15 20 25 30 35 40 45 50
0

0.02

0.04

0.06

0.08

0.10

0.86

0.88
free spectrum

(a)

am
pl

itu
de

0 5 10 15 20 25 30 35 40 45 50
0

0.02
0.04
0.06
0.08
0.10
0.12
0.14

0.54
0.56

constrained spectrum

mean-field

(b)

am
pl

itu
de

0 5 10 15 20 25 30 35 40 45 50
0

0.02

0.04

0.06

0.08

0.10

0.20

0.22
constrained spectrum

Rayleigh-Ritz

(c)

am
pl

itu
de

frequency

Figure 2. Relaxation spectra for a chain tethered to an impenetrable surface: (a)
unconstrained motion (corresponding to the direction parallel to the surface); constrained
dynamics (perpendicular to the surface), (b) in a mean-field approximation, (c) determined
with the Rayleigh–Ritz scheme, see text for details.

of the free case, the amplitudes represent the contribution of the modes to the end-to-end
correlation function.

Some important features can be read off from the numerical results:
• There is a frequency shift between parallel and normal relaxation.
• The mode picture is only approximately valid in the presence of the surface. Actually,

the spectrum is no longer determined by the fundamental Rouse frequencies alone.
• Besides small distortions in the spectrum, anharmonicities make additional, non-

negligible contributions to the correlation functions.
A significant quantity concerning the long-time behaviour of the dynamics may be
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expressed in terms of the ratio of the lowest frequencies

sN = ωnormal
min

ω
parallel
min

(59)

for the cases normal and parallel to the surface. These lowest frequencies are almost
completely dominating the behaviour of the position autocorrelation function and its
associated response functions. In particular, the response curves for the parallel and
perpendicular case are essentially determined by their maxima nearω

parallel
min and ωnormal

min ,
respectively. Some experiments yield a superposition of both response curves. The shift
sN then leads to a significant broadening of the total response curve, cf [13]. Beginning at
s1 = 2, the frequency shiftsN increases monotonically up tosN ' 2.4 for largeN . This
result is also expected to be based on mean-field considerations, see section 4.2.

The second important feature of the spectrum are anharmonic effects. Note first that the
eigenvalues are no longer regularly spaced. In particular, the spectrum for the relaxation
normal to the surface is no longer determined by some small set of fundamental Rouse
frequencies, since the problem is not separable and the modes of the free case are now
coupled by reflections at the surface. Furthermore, all eigenvalues, and not only some subset
of them leads to nonvanishing contributions to correlation functions. A simple physical
interpretation of these results in terms of a mean-field approximation for the dynamics of
the chain end is presented in section 4.2.

4.2. Interpretation in terms of a mean field picture

The numerical solution of the Fokker–Planck equation as given above is only tractable for
N small enough. In the case of a continuous chain (N very large) an extension of the
formalism is not immediate. As an alternative we use a mean-field approach to investigate
the relaxation of a tethered, continuous chain. As in the discrete bead-spring model, we
assume that the chain is fixed with one end to a planar surface. Furthermore, we concentrate
on the chain’s end-to-end vector.

Starting from the standard Gaussian model for continuous chains [2], we find that the
equilibrium distribution for the free end of the tethered chain factors into a product of three
independent parts, one for each spatial direction. They- andz-parts parallel to the interface
are Gaussian with mean zero and varianceσ 2

y = σ 2
z = `2, where ` denotes a suitable

length scale of the model. Thex-part—only defined for positivex—is an asymmetrical
non-Gaussian distribution of the form (cf [17])

p`(x) = x

`2
e−x

2/2`2
x > 0 (60)

with mean-value and variance

〈x〉` =
√
π

2
` ≈ 1.25̀ σ 2

x =
4− π

2
`2 ≈ 1

2.33
`2. (61)

Now, our basic assumption for the mean-field approximation is that the chain’s end
moves in an effective potential of the form

Ueff(r) = − lnp`(r). (62)

As with the exact dynamics the corresponding time evolution is governed by the Fokker–
Planck equation (7), now with the potentialUeff instead ofU , again subject to Neumann
boundary conditions at the surface. Using the Gaussian approximation instead of the actual
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effective potential, we find that the characteristic relaxation times are proportional to the
variances

σ 2
x = `2/2.33 and σ 2

y = σ 2
z = `2. (63)

Apart from these values, the behaviour is the same as for a fixed chain without any spatial
constraints. In particular, only the corresponding fundamental relaxation frequencies yield
contributions to linear correlation functions. Thus, anharmonicities are not present in
such a crude Gaussian approximation, only the squeezing of the equilibrium distribution
accompanied by a frequency shift

sGaussian=
σ 2
y

σ 2
x

= 2.33 (64)

is captured.
An exact solution of the mean-field dynamics via eigenfunction expansion will overcome

this failure of the simple Gaussian approximation. After a separation of variables
corresponding to the different directions, we are left with Hermite equations for the parallel
y- andz-directions, while the diffusion operator for thex-direction is of the form

L(x)eff = −
d2

dx2
+
[
x

`2
− 1

x

]
d

dx
. (65)

Applying the transformationx 7→ ζ = x2

2`2 , the corresponding eigenvalue problem leads to
the following confluent hypergeometric differential equation

ζϕ′′ + (1− ζ )ϕ′ + `
2

2
ωϕ = 0. (66)

The solutions for this equation are the Laguerre functionsLn(ζ ) with eigenvalues

ωn = 2n

`2
n = 0, 1, . . . . (67)

Resubstituting x2

2`2 for ζ , we find that these Laguerre functions automatically satisfy the
Neumann boundary conditions. This effect is due to a total screening of the boundary by
the effective potential, which shows an asymptotic behaviour of the formUeff(x) ∼ ln x for
x → 0.

At the level of the eigenvalues, thex-part of the spectrum is simply shifted by a factor
of 2. In contrast to the above Gaussian approximation, however, there are nonvanishing
contributions to the linear correlation functions from all parts of the spectrum, see figure 2.
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Appendix. The normalization constantsZUN and ZVN

The following derivation ofZUN andZVN was communicated to us by Glasser [15], Clarkson
University, Potsdam, New York, USA.

Let

IN(t) = e−t
2
∫
xi>0

exp[−x2
1 − (x1− x2)

2− · · · − (xN−1− xN)2− x2
N − 2xN t ] dNx. (68)
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ThenIN(0) = 2−N/2ZVN and, by relabellingt asxN+1,∫ ∞
0
IN(t) dt =

∫
xi>0

exp[−x2
1 − (x1− x2)

2− · · · − (xN − xN+1)
2] dN+1x (69)

is the same as 2−(N+1)/2ZUN+1. Obviously, we have

IN+1(t) =
∫ ∞

0
e−(t−u)

2
IN(u) du. (70)

Now letG be the generating function:

G(t) =
∞∑
N=0

IN(t)z
N |z| < 1. (71)

It is easy to see thatG(t) satisfies the integral equation

G(t) = e−t
2 + z

∫ ∞
0

e−(t−u)
2
G(u) du (72)

which can be solved by the Wiener–Hopf method. Note thatIN(t) is bounded for positivet
and is exponentially small for negativet , so the same is true ofG(t). In the usual notation
the integral equation is:

G+(t)+G−(t) = e−t
2 + z

∫ ∞
−∞

e−(t−u)
2
G+(u) du. (73)

Its Fourier transform, by the convolution theorem, is

Ĝ+(ω)+ Ĝ−(ω) =
√
πe−(ω/2)

2
[1+ zĜ+(ω)]. (74)

Now, Ĝ+(ω) is analytic in the upper halfω-plane andĜ−(ω) is an entire function. Let

g(ω) = 1−√πze−(ω/2)
2

(75)

which is nonzero in ‘the strip’−ν < Imω < ν, whereν = 2| ln(√πz)|1/2. It has the
Wiener–Hopf factorization

g(ω) = g+(ω)
g−(ω)

(76)

g±(ω) = exp

[
1

2π i

∫ ∞+ia±

−∞+ia±

ln g(u)

u− ω du

]
(77)

for −ν < a+ < a− < ν. Therefore, in the strip we have

g+(ω)
[
Ĝ+(ω)+ 1

z

]
= −g−(ω)

[
Ĝ−(ω)− 1

z

]
. (78)

Since the LHS is analytic in the strip and above, and the RHS is analytic in the strip and
below, both sides must be the same entire functionψ(ω). Sinceg+(ω)→ 1 as|ω| → ∞
andĜ+(ω)→ 0, by Liouville’s theoremψ(ω) = 1/z. Thus

Ĝ+(ω) = 1

z

{
exp

[ ∫ ∞
−∞

ln g(u)

ω − u
du

2π i

]
− 1

}
. (79)

Now we have
∞∑
N=1

(z/
√

2)NZUN = z
∫ ∞

0
G(t) dt = zĜ+(0) (80)
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with

Ĝ+(0) = lim
η→0+

Ĝ+(iη). (81)

By the formula(u− iη)−1 = P 1
u
+ iπδ(u),

zĜ+(0) = 1√
1− z√π

− 1=
∞∑
N=1

1
2N

N !
(z
√
π)N (82)

soZUN = (2π)N/2
1
2N
N ! . Next,

∞∑
N=0

(z/
√

2)NZVN = G(0). (83)

But, by Watson’s lemma∫ ∞
0
G(u)eiuω du = Ĝ+(ω) ∼ iG(0)

ω
(84)

and for largeω

Ĝ+(ω) ∼ 1

2π iωz

∫ ∞
−∞

ln(1−√πze−(u/2)
2
) du (85)

so

G(0) = − 1

πz

∫ ∞
0

ln(1−√πze−(u/2)
2
) du

= 1

πz

∞∑
N=1

(z
√
π)N

n

∫ ∞
0

e−nu
2/4 du =

∞∑
N=0

(z
√
π)N

(N + 1)3/2
. (86)

HenceZVN = (2π)N/2(N + 1)−3/2.
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